Unconventional Channel of Atmospheric Reaction NO + O₃ → NO₂ + O₂: A Mechanistic Study Using Born-Oppenheimer Molecular Dynamics

SOUZA,Y.S.¹(IC); CAMARGO,A.J(²(PQ); OLIVEIRA,H.C.B²(PQ); CARVALHO,V.H.S.¹ (PQ)

¹Grupo de Química Teórica e Estrutural de Anápolis, Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, 75001-970, Anápolis, Brasil
²Instituto de Química, Universidade de Brasília, 70904-970, Brasília, Brasil.
*ysousa078@gmail.com, fatioleg@gmail.com

Keywords: BOMD, DFT, Potential Surface, stratosphere

INTRODUCTION

Due to the importance of the ozone in the stratosphere for protection against harmful radiation, understanding the ozone depletion process becomes mandatory.⁴⁻⁵. There are several compounds involved in the degradation of the ozone, and specifically in the stratosphere there exists a significant amount of NOₓ compounds.⁴ Knowledge of these mechanisms has been obtained by a relative abundance of experimental and theoretical work.⁴⁻⁸. However, the mechanism involving the NO compound still remains unclear, since experiments observe two different mechanisms (abstracts with an end-O-atom and a central-O-atom) by nitric oxide⁷, and only the first possibility has been elucidated theoretically.

Scheme 1. The two mechanism involved in the reaction of NO + O₃.

In this paper, inspired by cross section experimental data, we reported a non-conventional mechanism for the abstraction of the central oxygen ozone carried by nitric oxide. Working with the STQN method (Synchronous Transit-Guided Quasi-

RESULTS AND DISCUSSION

During numerous simulations, there were certain discrepancies with the abstraction of the central oxygen ozone carried by nitric oxide. Working with the STQN method (Synchronous Transit-Guided Quasi-
Newton11, in an attempt to find a stationary transition state involved in the process, this procedure has been ineffective.

BOMD procedure showed trajectories capable of describing the mechanism of interest. A binding between the NO and O\textsubscript{3} molecules was observed. In Figure 2, specific configurations of the trajectories were shown; point out reactants (A panel), transition state (B panel) and products (C and D panels) with temporal scale of the event.

A binding between the NO and O\textsubscript{3} molecules was observed.

As previously discussed, the flat region represented by B indicates a noticeable maximum value. This point corresponds to the transition state, with an approximately 35 kcal.mol-1 barrier height. The minimum stationary points (A and D) in the potential curve defined the reactants and products, respectively.

CONCLUSION

In summary, the BOMD procedure was able to describe the unconventional mechanism for the NO + O\textsubscript{3} reaction. The main stationary points were observed in the calculated trajectory. The transition state is localized in the flat region on the potential curve. This result explains the inefficacy of the STQN method. Understanding this mechanism can be a guide for comprehending the dynamics and kinetic parameters involved in the depletion of the ozone in the stratosphere. In addition, other trajectories are being calculated with high level \textit{ab initio} methods.

ACKNOWLEDGMENTS

The authors are grateful for the support given from FAPEG, CAPES, CNPQ and FINATEC.
REFERENCES